Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

نویسندگان

  • Hongfei Shi
  • Can Wang
  • Zhipei Sun
  • Yueliang Zhou
  • Kuijuan Jin
  • Simon A T Redfern
  • Guozhen Yang
چکیده

Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and investigation of structural, optical, and photocatalytic properties of BiFeO3/reduced graphene oxide nanocomposites

This study have been developed BiFeO3/reduced graphene oxide (BFO/RGO) nanocomposites by introduction of RGO in the structure of BFO nanoparticles in a short term ultrasonic treatment. The X-ray diffraction pattern and Fourier-transform infrared spectroscopy analysis reveal that the BFO/RGO composites were successfully synthesized. UV-visible absorption show that the introduction of RGO can eff...

متن کامل

Electrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction

Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...

متن کامل

Near-infrared electro-optic modulator based on plasmonic graphene.

We propose a novel scheme for an electro-optic modulator based on plasmonically enhanced graphene. As opposed to previously reported designs where the switchable absorption of graphene itself was employed for modulation, here a graphene monolayer is used to actively tune the plasmonic resonance condition through the modification of interaction between optical field and an indium tin oxide (ITO)...

متن کامل

Microbial Reduction of Graphene Oxide by ‎Lactobacillus Plantarum

   Here, we report that the reduced graphene oxide nanosheets were successfully synthesized using the ‎Lactobacillus plantarum biomass in a simple, environmentally friendly and scalable manner. We ‎produced graphene oxide by oxidization and exfoliation of graphite flakes with modified Hummer's ‎method and then reduced to reduced graphene oxide by using Lactobacillus plantarum biomass as a ‎...

متن کامل

The route to functional graphene oxide.

We report on an easy-to-use, successful, and reproducible route to synthesize functionalized graphite oxide (GO) and its conversion to graphene-like materials through chemical or thermal reduction of GO. Graphite oxide containing hydroxyl, epoxy, carbonyl, and carboxyl groups loses mainly hydroxyl and epoxy groups during reduction, whereas carboxyl species remain untouched. The interaction of f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 16  شماره 

صفحات  -

تاریخ انتشار 2014